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Abstract. We examine a model of biological evolution of Eigen’s quasispecies in a so-called holey fitness
landscape, where the fitness of a site is either 0 (lethal site) or a uniform positive constant (viable site). The
evolution dynamics is therefore determined by the topology of the genome space which is modelled by the
random Bethe lattice. We use the effective medium and single-defect approximations to find the criteria
under which the localized quasispecies cloud is created. We find that shorter genomes, which are more
robust to random mutations than average, represent a selective advantage which we call “topological”. A
way of assessing empirically the relative importance of reproductive success and topological advantage is
suggested.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
87.23.Kg Dynamics of evolution – 72.15.Rn Localization effects (Anderson or weak localization)

1 Introduction

The mechanism of biological evolution is a very challeng-
ing topic for the physical community. This is well ex-
pressed in the numerous models of biological evolution
that have emerged in recent years. The list of models stud-
ied starts with large-scale properties of the evolutionary
process — massive global extinctions — and ends with
the works which are aimed at following the replicative
behavior of the chemical structures holding information,
namely DNA molecules. A lot of effort has been devoted
to this area recently [1–16] and still new fruitful ideas
emerge [17–19].

The process of biological evolution consists in three
steps: reproduction → mutation → selection. The im-
portant thing to note is that the biological fitness func-
tion which denotes an individuals’ ability to produce vi-
able offsprings depends on their phenotype. On the other
hand, the mutations occur in the genotype — informa-
tion stored in a sequence of DNA. The fitness function,
which assigns to each microscopic genotype its ability to
reproduce and pass on to the next generation, shows an
overwhelming complexity. This property makes the the-
oretical treatment of evolution an extremely complicated
task.

Simplifications of the problem are necessary. The
fruitful idea of adaptive landscapes was introduced by
Wright [20] and was later further simplified to fitness land-
scapes later. In this scheme the individual is represented
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as a point in a multidimensional space and to every point
a fitness value is assigned. Thus, a landscape is formed
of mountains of genetically adapted positions and valleys
of lethal genomes. Note the idealization: the fitness is di-
rectly given by the genome of the individual, not by its
(extended) phenotype.

In fact, the fitness landscape is not static since it
strongly depends on the ever changing environment, which
includes interactions with (co)evolving species as well as
abiotic influences [21–23]. Evolutionary process manifests
itself the ascent of individuals to peaks on the fitness
landscape.

A broad set of different fitness landscapes was re-
cently used to study the behavior of the evolutionary
system. These models employ both static [24,25] and
dynamic landscapes [23,26–28]. They include the sharply-
peaked landscape (SPL) with a single preferred genome
(wildtype), the Fujiyama landscape, or the holey land-
scape (HL). Several recent reviews summarize various ap-
proaches explored [23,29–31].

Generally, one simplifies the genetic code considering
only a two-letter {0, 1} alphabet. Let us consider, for ex-
ample, the digits 1 and 0 as symbols for two different alle-
les of a certain gene1. Assuming constant genome length
of d loci the state space is a hypercube G = {0, 1}d.

The dynamics of evolution on fitness landscapes have
the most prominent scheme in the quasispecies model as
introduced by Eigen [32]. Originally it was introduced as

1 Other possibility is to assign pyrimidines in the genetic
code by 1 and purines by 0.
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a model for chemical prebiotic evolution, but it showed
itself plausible in the investigation of the mechanisms of
microevolution of viruses and bacteria, i.e. organisms with
relatively simple genomes.

The quasispecies is defined as a cloud of closely re-
lated individuals. They hang together but certainly they
may move on the fitness landscape. We assume an infinite
population size and therefore the dynamics of the qua-
sispecies are probabilistic, but without any noise which
would be induced by finite size effects. The quasispecies
obeys three basic processes: reproduction, selection and
is liable to mutational genetic changes. Reproduction and
selection are treated together — the reproductive abil-
ity depends on the fitness and hence selection takes part
here. Mutation can occur in the individual’s genome with
a probability rate µ.

It is evident that the native geometry of the genome
space is the above mentioned hypercube G = {0, 1}d. So,
this is the natural starting point when building a model
for a fitness landscape. Recently, the main focus has been
aimed at the presence or absence of the adaptive regime
induced by a single maximum in the fitness landscape.
Therefore, the first thing to try is the sharply-peaked land-
scape on the hypercube. This model was solved exactly by
Galluccio et al. [33,34].

The most important feature found in the quasispecies
model in SPL is the error threshold [35,36]. It is the phase
transition that separates two regimes of the quasispecies
evolution, namely the adaptive regime and the wandering
regime. In the adaptive regime the localized cloud of qua-
sispecies is formed around the wildtype (for us a certain
site in the lattice), whereas in the wandering regime no
quasispecies is formed due to a mutation load.

The error threshold phenomenon comes out of the
competition between the selective advantage of a certain
wildtype and the mutation load presented by the rate µ.
The threshold is then characterized by the specific value of
the selective advantage. We want to show that the selec-
tive advantage in the specific site is not the only parame-
ter, whose value can distinguish two significantly different
regimes. There are also geometrical properties, e.g. con-
nectivity of the site, that can make the genotype in the
specific site advantageous. These are the main tasks of this
article.

Indeed, the real landscapes are far more complicated
than SPL. It is expected that rugged landscapes with
many competing maxima represent a realistic picture [1].
Such landscapes are well-known in the theory of spin glass-
es [37] and a “spin-glass” theory of evolution was investi-
gated, e.g. in [38]. In our previous work we have studied
several similar models of the fitness landscape, too [39].

Yet another approach to the modelling of the fitness
landscape is used for computations [40,41] — the so-called
holey landscape (HL), where the fitness is either a positive
constant (which may be set to 1) or it is 0 which means
that the individual with the corresponding genetic code
dies with a probability of 1 without having offspring.

Indeed, a large part of the point mutations which may
occur at the basic level of the evolutionary picture are

lethal for the individual — they lead to the ‘lethal’ sites.
Therefore, the hypercube does not represent a good ap-
proximation to the evolutionary dynamics, because only
a small part of its edges represent paths to possible new
‘hospitable’ genomes.

A sparsely connected set of points selected at some of
the hypercube corners is perhaps a better choice. Such
sparse graphs and their adjacency matrices are under
study extensively at present; see e.g. [42–44] and refer-
ences therein. The authors observe the localization of the
eigenvectors of the sparse matrices due to topological char-
acteristics only.

We approach the problem from a somewhat different
perspective which resembles the study of topologically dis-
ordered solids where the random network of bonds is often
well modelled by the Bethe lattice [45]. This, of course,
supposes that there are no short loops in the graph. Sup-
posing we are above the percolation threshold, our random
lattice forms a giant cluster within the hypercube and the
typical length of loops is of order log N , where N is the
total number of sites N = 2d, see [46]. Thus, the Bethe
lattice may be a good model for the topology of our sparse
graph.

The main question addressed in our work will be the
following: Selective advantage in biological evolution is
usually attributed to higher reproductive success. If ad-
vantage due to high individual fitness exceeds a certain
threshold, a quasispecies is formed around the site. This
is the usual error-threshold phenomenon. Here we ask,
whether some factors related purely to the structure or
topology of the genome space may lead to similar selec-
tive advantage, and if a certain threshold can be found
separating the adaptive and wandering regime of biologi-
cal evolution.

2 Model

Recently, [39] we have modelled evolution in a holey land-
scape using the regular Bethe lattice. Now we will try
to represent it in a more precise way and take into ac-
count the irregularity of the lattice. For each site we select
whether the links that leave it lead to another ‘hospitable’
site of the hypercube, or not. In the latter case, there are
some links leading from the site to the ‘lethal’ sites of the
hypercube and so all mutants that took this direction are
doomed.

We start with a regular Bethe lattice with a connec-
tivity k. We construct the irregular Bethe lattice by ran-
domly assigning lethal sites and removing all sites which
are connected to the rest of the lattice only through a
lethal site. The evolution process amounts to diffusion on
this lattice. Hops from a viable site to any of its neighbors
occur with an equal rate µ. Hops from lethal sites are pro-
hibited. So, the edges to lethal sites are “dead ends” or
“dangling bonds”, in the language of condensed matter
physics.

Let i be a viable site. Let us denote (i) as the set of
viable neighbors of i. κi = |(i)| ≤ k is the number of those
viable neighbors. For k we suppose only that it is large
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enough to fulfill the previous inequality. The arbitrariness
of the choice of k will be clarified later on. Intuitively, dur-
ing evolution the probability will flow out from i to all its
k neighbors, but flow in only from κi viable ones. There-
fore, we expect that a site with larger κi is more likely
to gather individuals and form a quasispecies cloud. The
scope of this paper is to elaborate this intuitive picture in
a more formal manner.

If we denote pi(t) as a (relative) population2 of site i
at time t, we can write the following master equation

ṗi(t) =
∑

j

Tij pj(t) (1)

where the matrix T contains the effects of mutations and
reproduction:

Tij =




−µ k + ζ i = j

µ j ∈ (i)

0 elsewhere.

(2)

The constant ζ is introduced artificially in order to keep
the total population constant. In fact, there are two causes
of the net population outflow which must be countered by
the ζ term. The first one is the presence of traps — lethal
sites that absorb the individuals. The second one comes
from the very topology of the Bethe lattice. Indeed, any
finite Bethe lattice has the rather counter-intuitive prop-
erty that the number of the surface sites is comparable to
the number of bulk sites and this property holds even in
the limit of an infinite number of sites. Therefore, there is
always a net flow of probability toward the surface. How-
ever, we are interested in the properties of the sites deep
in the bulk and the outflow toward the surface should be
considered as an artifact of the Bethe lattice approxima-
tion. To sum up, we will fix the value of ζ later on in the
calculations, in order that the population remains fixed.

The dynamical matrix T is in the model symmetric,
and this enables us to use the method of the resolvent
in our calculations. The symmetry results from the as-
sumption of equal mutation rates, µ. This widely used ap-
proximation simplifies all the following calculations and,
since we are interested only in a stationary state of the
system, it is not considered to change the main results.
One can introduce the edge-dependent rates µij and then
ζ would become a function of all pi(t) and equation (1)
would generally become non-linear one. But this approach
goes beyond the scope of our article.

3 Partitioning

As in the previous paper [39] we investigate the forma-
tion of a localized state, now interpreted as a quasispecies

2 By “population” we mean the infinite population limit, the
probability of finding a given individual in the site i of the
lattice. We prefer the term “relative” population because of
the perturbations that will be added to the lattice and will
destroy the conservation of the overall relative population.
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Fig. 1. Division of the Bethe lattice during the partitioning.

cloud, through the properties of the resolvent of the ma-
trix T

G(z) = (z − T )−1. (3)

The idea of the calculation is quite simple: In the long-time
limit only the largest eigenvalue of the matrix T survives,
and the corresponding eigenvector describes the station-
ary state of the evolutionary system.

In order to find the largest eigenvalue of T , we search
for the poles of an element of the resolvent matrix G. These
are exactly the eigenvalues of T , no matter which element
of G we choose. And since we want to observe the forma-
tion of the localized state around a specific site i = 1, we
need the diagonal matrix element of the resolvent

G(z) = [G(z)]11 (4)

which can be calculated using the partitioning (projector)
method [47], explained in more detail in [39]. The loop-
less structure of the Bethe lattice greatly simplifies the
treatment. We proceed essentially in two steps, which are
illustrated in Figure 1. In the first step, we project out of
the site i = 1 itself. The rest of the Bethe lattice splits
into disconnected branches. We find

G(z) =
1

z + µk − ζ − µ2
∑

j∈(1) Γj(z)
, (5)

where Γj(z) is the diagonal element of the projected re-
solvent on the terminal site of the branch starting with
site j. (The terminal sites are denoted as 2 in Fig. 1.)

In the second step, we calculate Γj(z) by projecting
out the site j. We find, similar to the previous case,

Γj(z) =
1

z + µk − ζ − µ2
∑

l∈(j)\{1} Γl(z)
· (6)

Some of the sites l ∈ (j)\{1} are denoted by 3 in Figure 1.
Iterating the equation (6) we could in principle calculate
the resolvents on the terminal sites and inserting them
into equation (5) obtain the desired quantity.

This procedure works well in an infinite regular Bethe
lattice, where Γj(z) for j deep in the bulk does not depend
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on the site index j and (6) represents in fact a closed
equation for Γ (z) ≡ Γj(z) ∀j. However, this procedure
cannot be directly applied in the case of an irregular Bethe
lattice. Nevertheless, it is a good starting point for an
approximation we will describe in the following.

4 Effective medium approximation

The mean-field-type treatment of disordered solids was
developed a long time ago within the coherent poten-
tial approximation (CPA) [48]. In the theory of sparse
random matrices it was elaborated using the replica
method [42–44] and called the effective medium approxi-
mation (EMA). In this section we will use the EMA for
the irregular Bethe lattice without using the replica trick.

The main idea relies on a simple observation that the
sum

∑
l∈(j)\{1} Γl(z) containing κj − 1 terms can be re-

placed by its average value for large κj , thus neglecting
fluctuations. Indeed, it was proved that the CPA is exact
in the limit of infinite connectivity [49]. Therefore, our
version of the EMA amounts to approximating

∑
l∈(j)\{1}

Γl(z) � (κj − 1) 〈Γ (z)〉 · (7)

In order to close the equations, we must average expres-
sion (6) over the probability distribution of connectivi-
ties P (κ)

〈Γ (z)〉 =
∑

κ

P (κ)
z + µk − ζ − µ2(κ − 1)〈Γ (z)〉 · (8)

The latter equation (8) is the core of the EMA. When
we insert its solution 〈Γ (z)〉 into (5) and perform again
the average over connectivities, we obtain the averaged
diagonal element of the resolvent 〈G(z)〉, which is now
site-independent. The parameter ζ represents the shift in
the variable z and should be adjusted so that the upper
edge of the support of the imaginary part of 〈G(z)〉 (i.e.
the density of states) lies at z = 0. This expresses the
requirement of the conservation of the population size.

As an illustration we show in Figure 2 the real and
imaginary parts of 〈Γ (z)〉 for the connectivity distribution
chosen as

P (κ) = p δ(κ − 2) + (1 − p) δ(κ − 3) (9)

for 0 ≤ p ≤ 1. We can see that the imaginary part of
〈Γ (z)〉 approaches zero as z1/2 at the band edge and the
real part approaches a finite limit. From the technical
point of view, the finiteness of the limit is the source of
the transition between localized and delocalized states.

5 Single defect

So far we have investigated the Bethe lattice as an aver-
aged homogeneous effective medium. Now we investigate

z

〈Γ
(z

)〉

10-1-2-3-4-5-6

1

0.5

0

-0.5

-1

Fig. 2. The averaged resolvent at terminal site 〈Γ (z)〉 for the
irregular Bethe lattice with connectivity distribution defined
in (9), where p = 1

2
. Full line: imaginary part. Dashed line:

real part.

Fig. 3. The “defect” site with a different connectivity. Thin
links represent lethal mutations, the thick ones mutations to
viable sites.

the behavior of the resolvent at a site i = 1 with a specific
connectivity κ1. The situation is schematically depicted in
Figure 3.

This approach has a biological motivation. What we
see in nature is that there are frequent groups of closely
related animals. These groups form taxonomic classes or,
better said, the classes are defined as the groups of such
closely related individuals. In the following, we examine if
the clustering of individuals, modelled as the addition of
the site with largest connectivity, leads to some observable
changes in the quasispecies evolutionary process.

The on-site resolvent corresponding to this site can be
found from equation (5), where the resolvents at the ter-
minal sites are approximated as in (7). This is the essence
of the single-defect approximation (SDA). Hence

GSDA(z) =
1

z + µk − ζ − µ2κ1〈Γ (z)〉 · (10)

A state localized at this site exists, if the resolvent
GSDA(z) has a pole for a real positive z. This is equiv-
alent to the condition

κ1 > κc ≡ µk − ζ

µ2

1
Re〈Γ (0)〉 · (11)

Therefore, the state is localized and the quasispecies cloud
is formed for integer κ1 greater than κc. This corresponds
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wandering regime

adaptive regime

p

κ
c

10.80.60.40.20

4

3.5

3

2.5

2

Fig. 4. The dependence of the critical value of the connectiv-
ity, κc, on p, for connectivity distribution (9).

to the adaptive regime of the evolutionary process. We
use as an example again the distribution (9) and show
in Figure 4 the dependence of the threshold κc on the
parameter p of the probability distribution.

We will consider yet another type of “defect” in the ef-
fective medium. Imagine that the site investigated, i = 1,
corresponds to a genome of length different to the average.
This difference is translated in our model as a choice of dif-
ferent total connectivity k in the site i (including edges to
both viable and lethal sites). So, we may replace k → k+λ
in equation (10). Then we may investigate the transition
from the wandering to the adaptive regime when varying
two parameters λ and κ1. We will see that the individuals
added due to the ζ term in equation (1) are redistributed
in the lattice in such a manner that the total population
changes. This is only due to addition of the “defect” and
the localization of individuals in its vicinity. The condition
for the existence of a localized state, i.e. for the adaptive
regime, is analogous to (11) and can be written as

λ < λc ≡ µκ1 Re〈Γ (0)〉 − µk − ζ

µ
· (12)

We show in Figure 5 an example of the dependence of
λc for the same connectivity distribution (9) as in previous
cases, and for a specific, fixed choice of κ1.

6 Conclusions

We modelled the complex fitness landscape of biologi-
cal evolution with an irregular Bethe lattice. The for-
mation of localized quasispecies in the adaptive regime
was observed via the occurrence of the isolated pole in
the on-site resolvent. Using the effective medium approxi-
mation we calculated the disorder-averaged resolvent and
within the single-defect approximation we investigated the
localization.

We found that the quasispecies is formed if the site
is connected to a sufficiently large number of viable sites.

wandering regime

adaptive regime

p

λ
c

10.80.60.40.20

3

2.5

2

1.5

1

0.5

0

Fig. 5. The dependence of the critical value λc on the prob-
ability p, for distribution (9) and κ1 = 5.

We found the condition for the critical value of the connec-
tivity κc separating the adaptive evolutionary regime for
κ > κc and the wandering regime for κ < κc. As expected,
κc grows with the average connectivity and qualitatively
speaking the quasispecies are formed at such sites that
have sufficiently larger number of viable neighbors than
average. We may interpret it as a purely topological selec-
tive advantage: The species has better chance to survive
not because of its individual reproductive abilities, but
because it is less vulnerable to random alterations of the
genetic code.

We investigated also another deviation from the mean,
connected to the overall number of neighbors. In more bio-
logical language it corresponds to the length of the genetic
code. We observed that the adaptive regime is favored for
lower values of the connectivity, i.e. for shorter genomes,
if the number of viable neighbour sites is considered con-
stant. This type of selective advantage is therefore also of
topological origin and has a similar biological interpreta-
tion to that presented above. Indeed, longer genome means
higher probability of a lethal mutation.

In both cases it is important to note that it is the
deviation from the average topology which makes the se-
lective advantage work and which leads to the formation
of localized states. So, it is the (sufficiently strong) topo-
logical disorder that is responsible for the formation of
quasispecies.

We may conclude by summarizing that without resort
to individual reproductive capacities, biological evolution
favors genomes which are shorter and more robust to ran-
dom mutations. This has one more important implication;
a genome, which can be easily mutated without affecting
the death of its carrier, means also a less-defined species.
One may therefore predict that successful species will exist
in a broad variety of slightly different sub-species. This ef-
fect is caused by the selective advantage of certain topolo-
gies of the genome space. Observation of the variability
within a single species may therefore say something of the
relative importance of topological selective advantage in
comparison to individual reproductive success.
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49. V. Janǐs, D. Vollhardt, Phys. Rev. B 46, 15712 (1992)


